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Abstract

This paper provides an analytical solution for the dynamic response of a discontinuous beam with one step change and

an aligned neutral axis. The case of free–free boundary conditions is considered to obtain direct frequency response

functions due to harmonic force or couple excitation at either end location. This behavior is confirmed through a series of

experimental tests and via comparison to receptance coupling methods.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Beams provide a fundamental model for the structural elements of many engineering applications. For
instance, helicopter rotor blades, spacecraft antennae, and robot arms are all examples of structures that may
be modeled with beam-like elements [1,2]. The work presented in this paper grew out of the need to examine an
industrial machining process where the dynamic response of a beam-like structure was the primary limiting
factor—see Refs. [3–6] for explanations of machining stability. This material removal process additionally
presented two unique challenges: (1) a change in the beam’s dynamic response and machining stability limit as
each layer of material was incrementally removed; and (2) a discontinuity in the beam structure which
prevented direct application of conventional beam theory. While the literature for machining stability
prediction is widely available, the goal of this paper is to present analytical solutions for the dynamic response
of a discontinuous beam that were developed to better understand the aforementioned industrial process.

A literature survey has shown that the dynamic response for the transverse vibration of continuous
Euler–Bernoulli beams has been well studied using both modal superposition techniques [7] and receptance
techniques [8]. The static behavior of Euler–Bernoulli beams with jump discontinuities has been studied using
generalized solutions [9–11]. The free vibration of stepped beams with aligned neutral axes has previously been
treated to find natural frequencies and mode shapes expressed as determinants equated to zero [12–14]. While
previous works have treated the free vibration case, the present paper investigates the dynamic response of
stepped beams.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Alternative coupling techniques, such as receptance coupling substructure synthesis [15–17], can also be
used to examine the dynamic behavior of discontinuous beams. Substructuring methods allow the prediction
of assembly frequency response functions (FRFs) using FRFs from individual components obtained either
analytically or experimentally. The solution forms a 2� 2 matrix of the primary receptances of the individual
beam components for each frequency. The technique requires an inversion of the 2� 2 matrices per frequency.
For high-resolution FRFs, the solution becomes computationally expensive.

In this paper, an analytical solution for the dynamic response of a free–free discontinuous beam with a
single step change and an aligned neutral axis is considered. The phrase ‘‘aligned neutral axis’’ is applied to
specifically distinguish the case where the neutral axis of both beams coincide; this is in contrast to the case
where the neutral axis of the beams may be offset. Analytical results are verified by receptance coupling
methods and experiment. One limitation of this work is that a partial differential equation is needed to obtain
an assumed mode shape solution. Additionally, the described approach requires information about the
compatibility conditions between individual components. The presented work can easily be extended to beams
with n-beam sections and other classical boundary conditions. The solution process is reduced to solving a set
of 4n equations with 4n variables.

2. Receptance derivation for discontinuous Euler–Bernoulli beams

This section develops the receptance functions for the case of free boundary conditions at the end locations
with one step change in cross section as shown in Fig. 1. The discontinuity is treated by assuming two separate
uniform Euler–Bernoulli beams coupled with continuity conditions at location B. The problem is solved as a
boundary value problem with eight unknown constants.

2.1. Uniform beam receptances

This section examines the receptance function solutions for the uniform beam. The discontinuous beam will
be shown to be an extension of the uniform beam. The governing equation for the free vibration of a uniform
Euler–Bernoulli beam is given in Ref. [7] as

q2vðx; tÞ

qt2
þ

EI

rA

q4vðx; tÞ
qx4

¼ 0, (1)

where E is the beam modulus of elasticity (N/m2), A is the beam cross-sectional area ðm2), r is the beam
density ðkg=m3Þ, I is the second area moment of inertia about the neutral axis ðm4Þ, v is the transverse
deflection, and t and x are time and space, respectively. The Euler–Bernoulli approximation assumes that the
length of each beam section is much greater than the height of each section and that the shear and rotary
inertia effects are ignored. The solution to Eq. (1), when subjected to a harmonic input of frequency o (rad/s),
can be separated into a solution in space and time

v ¼ X ðxÞ sinot. (2)

Substitution of Eq. (2) into Eq. (1) yields dependence upon the spatial quantity alone,

q4X ðxÞ
qx4

� b4X ðxÞ ¼ 0, (3)
v1 v2

x2x1

L1 L2
CBA

Fig. 1. Schematic of the stepped beam with aligned neutral axis and free boundary conditions at locations A and C.
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where b4 ¼ o2rA=ðEIð1þ iZÞÞ and Z is a non-dimensional structural damping factor. The general mode shape
solution to X ðxÞ is

X ðxÞ ¼ A sin bxþ B cos bxþ C sinh bxþD cosh bx, (4)

where A, B, C, and D are constants determined by suitable boundary conditions. The free vibration solution is
4� 4 determinant obtained by applying four boundary conditions to Eq. (4). The forced vibration solution,
given by Ref. [8], is obtained by equating applied forces into the boundary conditions. Applied harmonic
forces are equated to the shear force while applied harmonic couples are equated to the bending moment. The
signs on the forces are determined by the positive sign convention as shown in Fig. 2. The FRF is obtained by
solving a set of four equations with four variables.

2.2. Discontinuous stepped beam solution for force excitation at location C

This section develops the frequency response for force excitation at position C as shown in Fig. 3. The
solution for the first beam section (A–B) is given by

X 1ðx1Þ ¼ c1 sin b1x1 þ c2 cos b1x1 þ c3 sinh b1x1 þ c4 cosh b1x1, (5)

where the subscript 1 refers to the (A–B) beam section. The (A–B) beam sectional properties are given by E1,
I1, r1, and A1. b1 is given by b41 ¼ o2r1A1=ðE1I1ð1þ iZÞÞ.

Applying the free boundary condition at location A requires

q2v1ð0Þ
qx2

1

¼
q3v1ð0Þ

qx3
1

¼ 0. (6)

Substituting Eq. (6) into Eq. (5) yields c1 ¼ c3 and c2 ¼ c4. The resulting expression becomes

X 1ðx1Þ ¼ c1ðsin b1x1 � sinh b1x1Þ þ c2ðcos b1x1 � cosh b1x1Þ. (7)
V1

M1 M2

V2

Fig. 2. Sign convention for positive bending moment ðMÞ and shear force ðV Þ for the Euler–Bernoulli beam.

Fig. 3. Schematic of the stepped beam subjected to: (a) a harmonic force of amplitude F and frequency o, applied at location C; (b) a

harmonic force of amplitude F and frequency o, applied at location A; (c) a harmonic couple of amplitude M and frequency o, applied at

location C; and (d) a harmonic couple of amplitude M and frequency o, applied at location A.
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The solution for the second beam section (B–C) is given by

X 2ðx2Þ ¼ c5 sin b2x2 þ c6 cos b2x2 þ c7 sinh b2x2 þ c8 cosh b2x2, (8)

where the subscript 2 refers to the (B–C) beam section. The (B–C) beam sectional properties are given by E2,
I2, r2, and A2, and b2 is given by b42 ¼ o2r2A2=ðE2I2ð1þ iZÞÞ. It is understood that b1 and b2 are functions of
frequency and the explicit notation has been left out.

The continuity conditions at location B for the given case of a colinear neutral axis state that the deflection,
slope, bending moment, and shear force are equal for the opposite sides of the joint. The analytical expressions
for the continuity conditions state:

v1ðL1Þ ¼ v2ð0Þ, (9a)

dv1ðL1Þ

dx
¼

dv2ð0Þ

dx
, (9b)

E1I1
d2v1ðL1Þ

dx2
¼ E2I2

d2v2ð0Þ

dx2
, (9c)

E1I1
d3v1ðL1Þ

dx3
¼ E2I2

d3v2ð0Þ

dx3
. (9d)

Applying the continuity equations yields

F 1c1 þ F 3c2

F 3c1 � F 2c2

F 1c1 þ F 4c2

�F4c1 þ F1c2

2
6664

3
7775 ¼

0 1 0 1

b21I21 0 b21I21 0

0 b221I21 0 �b221I21

�b321I21 0 b321I21 0

2
66664

3
77775

c5

c6

c7

c8

2
6664

3
7775, (10)

where

F 1 ¼ sin b1L1 þ sinh b1L1, (11a)

F 2 ¼ sin b1L1 � sinh b1L1, (11b)

F3 ¼ cos b1L1 þ cosh b1L1, (11c)

F4 ¼ cos b1L1 � cosh b1L1, (11d)

I21 ¼
E2I2

E1I1
and b21 ¼

b2
b1

. (12)

The constants c5; c6; c7, and c8 can then be solved in terms of c1 and c2 using Eq. (10). The solution for X 2ðxÞ

may now be expressed in terms of the remaining unknown constants c1 and c2:

X 2ðx2Þ ¼ c1 T1 sin b2x2 þ T2 cos b2x2 þ T3 sinh b2x2 þ T4 cosh b2x2

� �
þ c2 V 1 sin b2x2 þ V 2 cos b2x2 þ V3 sinh b2x2 þ V 4 cosh b2x2

� �
, ð13Þ

where

T1 ¼
F 4

2I21b
3
21

þ
F 3

2b21
, (14a)

T2 ¼
F2

2I21b
2
21

þ
F 1

2
, (14b)

T3 ¼ �
F4

2I21b
3
21

þ
F3

2b21
, (14c)
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T4 ¼ �
F2

2I21b
2
21

þ
F1

2
, (14d)

V1 ¼ �
F1

2I21b
3
21

�
F 2

2b21
, (15a)

V 2 ¼
F4

2I21b
2
21

þ
F3

2
, (15b)

V 3 ¼
F1

2I21b
3
21

�
F2

2b21
, (15c)

V 4 ¼ �
F 4

2I21b
2
21

þ
F 3

2
. (15d)

Constants c1 and c2 are determined by the boundary conditions at location C. The boundary conditions at C
require

q2v2ðL2Þ

qx2
2

¼ 0, (16a)

E2I2
q3v2ðL2Þ

qx3
2

¼ �F sinot. (16b)

The boundary conditions state that the bending moment is equal to zero while the shear force is equal to the
applied impulse load. Applying the conditions of Eq. (16) to Eq. (13) yields

c1Z1 þ c2Z2 ¼ 0, (17a)

c1Z3 þ c2Z4 ¼ �
F

E2I2
, (17b)

where

Z1

Z2

Z3

Z4

2
6664

3
7775 ¼

�T1b
2
2 �T2b

2
2 T3b

2
2 T4b

2
2

�V 1b
2
2 �V2b

2
2 V 3b

2
2 V 4b

2
2

�T1b
3
2 T2b

3
2 T3b

3
2 T4b

3
2

�V 1b
3
2 V 2b

3
2 V 3b

3
2 V 4b

3
2

2
66664

3
77775

sin b2L2

sinh b2L2

cos b2L2

cosh b2L2

2
66664

3
77775. (18)

Solving Eq. (17) yields the frequency response solution

v

F
¼

1

ð1þ iZÞE2I2ðZ1Z4 � Z2Z3Þ
½Z2ðT1 sin b2x2 þ T2 cos b2x2 þ T3 sinh b2x2

þ T4 cosh b2x2Þ � Z1ðV1 sin b2x2 þ V2 cos b2x2 þ V 3 sinh b2x2 þ V4 cosh b2x2Þ�, ð19Þ

where the compound beam is forced at position C, x2 represents the spatial output location, and Z represents
the structural damping factor. The denominator Z1Z4 � Z2Z3 ¼ 0 forms the so called frequency equation
whose roots are the natural frequencies of the system.

2.3. Discontinuous stepped beam solution for force excitation at location A

This section develops the frequency response for force excitation at position A as shown in Fig. 3(b). The
continuity conditions are the same as discussed above, however the boundary conditions at location A require

q2v1ð0Þ
qx2

2

¼ 0, (20a)
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Table 1

Notation for force excitation at position A

Z5 ¼ �T2b21 þ T4b21
Z6 ¼ �V2b

2
1 þ V4b

2
1

Z7 ¼ �T1b
3
1 þ T3b

3
1

Z8 ¼ �V1b
3
1 þ V3b

3
1

F5 ¼ sin b2L2 sinhb2L2 þ coshb2L2 cosb2L2

F6 ¼ � sin b2L2 coshb2L2 þ sinhb2L2 cosb2L2

F7 ¼ sinhb2L2 cosb2L2 þ sinb2L2 coshb2L2

F8 ¼ � sin b2L2 sinh b2L2 þ coshb2L2 cosb2L2

T5 ¼ sin b1L1
I21b

2
21

2
F6 þ

F6
2

� �
þ cosb1L1

I21b
3
21

2
ðF 5 � 1Þ þ b21

2
ðF5 þ 1Þ

� �

T6 ¼ sin b1L1
I21b

3
21

2
ð1� F5Þ �

b21
2
ðF5 þ 1Þ

� �
þ cosb1L1

I21b
2
21

2
F 6 þ

F6
2

� �

T7 ¼ sinhb1L1
I21b

2
21

2
F6 �

F6
2

� �
þ coshb1L1

I21b
3
21

2
ð1� F 5Þ þ

b21
2
ðF5 þ 1Þ

� �

T8 ¼ sinhb1L1
I21b

3
21

2 ðF 5 � 1Þ � b21
2 ðF5 þ 1Þ

� �
þ coshb1L1

F6
2 �

I21b
2
21

2 F6

� �

V5 ¼ sin b1L1
I21b

2
21

2
ðF8 � 1Þ þ 1

2
ðF8 þ 1Þ

� �
þ cosb1L1

I21b
3
21

2
F 7 þ

b21
2

F7

� �

V6 ¼ � sin b1L1
I21b

3
21

2
F7 þ

b21
2

F7

� �
þ cos b1L1

I21b
2
21

2
ðF8 � 1Þ þ 1

2
ðF8 þ 1Þ

� �

V7 ¼ sinhb1L1
I21b

2
21

2
ðF8 � 1Þ � 1

2
ðF8 þ 1Þ

� �
þ coshb1L1

b21
2

F7 �
I21b

3
21

2
F 7

� �

V8 ¼ sinhb1L1
I21b

3
21

2
F 7 �

b21
2

F7

� �
þ coshb1L1

I21b
2
21

2
ð1� F8Þ þ

1
2
ðF8 þ 1Þ

� �
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E2I2
q3v1ð0Þ
qx3

2

¼ F sinot. (20b)

The sign change on the forcing term is due to the free body sign convention as shown in Fig. 2. The boundary
conditions at location C now require

q2v2ðL2Þ

qx2
2

¼
q3v2ðL2Þ

qx3
2

¼ 0. (21)

Using the same procedure as outlined before, the response of the compound beam to harmonic excitation is
obtained. However, for loading at position A, the order of the procedure is reversed. In this case, the
boundary conditions at location C are applied first, then the continuity conditions at location B, and then
finally the boundary conditions at location A. Using the method as outlined before, the solution becomes

v

F
¼

1

ð1þ iZÞE1I1ðZ5Z8 � Z6Z7Þ
½Z5ðV 5 sin b1x1 þ V 6 cos b1x1 þ V7 sinh b1x1

þ V 8 cosh b1x1Þ � Z6ðT5 sin b1x1 þ T6 cos b1x1 þ T7 sinh b1x1 þ T8 cosh b1x1Þ�, ð22Þ

where the compound beam is loaded at position A. Additional terms are applied to reduce notation. The
constants are defined in Table 1, where b21 and I21 are the same as above.
3. Extension of the analytical solution for applied couples and other boundary conditions

This section examines the case of applied harmonic couples as shown in Figs. 3(c) and (d). For both systems,
the continuity conditions are the same as discussed above. For excitation at location C, the boundary
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conditions at position A require

q2v1ð0Þ
qx2

1

¼
q3v1ð0Þ

qx3
1

¼ 0. (23)

Due to the free body sign convention, the boundary conditions at position C now require

E2I2
q2v1ðL2Þ

qx2
2

¼M sinot, (24a)

q3v2ðL2Þ

qx3
2

¼ 0. (24b)

For excitation at position A, the boundary conditions at location C require

q2v2ðL2Þ

qx2
2

¼
q3v2ðL2Þ

qx3
2

¼ 0, (25)

while the boundary conditions at location A require

E1I1
q2v1ð0Þ
qx2

1

¼ �M sinot, (26a)

q3v1ð0Þ
qx3

1

¼ 0. (26b)

The system FRFs are obtained using the same procedure as outlined before. Boundary conditions at the
unforced end are applied first, then the continuity conditions, and then the boundary conditions at the point of
excitation.

Applications due to other classical boundary conditions are straightforward. In exchange for the free
condition of zero shear and zero bending moment at the unforced end, the boundary conditions become
v ¼ qv=qx ¼ 0 for a fixed end, v ¼ q2v=qx2 ¼ 0 for a pinned end, and qv=qx ¼ q3v=qx3 ¼ 0 for a sliding end.

3.1. Comparison of the analytical solution to receptance coupling

This section compares the responses given by the proposed analytical solution and receptance coupling
substructure synthesis. Receptance coupling is an alternative method capable of predicting the dynamic
response of the stepped beam. The receptance coupling method involves coupling the receptances for uniform
beams obtained analytically or experimentally at the discontinuity using compatibility conditions. The end
result is a 2� 2 matrix for each frequency consisting of the primary receptances given by the individual beam
components. The component matrices are written as

R11 ¼
h1 l1

n1 p1

" #
¼

x1

f 1

x1

m1

y1
f 1

y1
m1

2
664

3
775, (27)

where the subscripts indicate either direct or cross receptances due to applied component forces and moments
at the coordinates shown in Fig. 4. The individual beam receptances, h, l, n, and p, are frequency-dependent
vectors such that the size of the total matrix is 2� 2�N where N is the length of the frequency vector. The
entries into the matrices are found from a model of the free–free beams based upon Ref. [8]. The solution for
the case of excitation at location C, given by receptance coupling [15], is

G11 ¼ R11 � R12ðR22 þ R2b2bÞ
�1R21, (28)
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Fig. 5. Dimensions for the beam used for experimental and analytical study. All length dimensions are given in units of mm.

free-free
beam

accelerometer
sensor

data
acquisitionimpact

hammer

Fig. 6. Schematic of the experimental tests performed to validate the analytical studies. The discontinuous beam was suspended from a

nylon thread that was attached the end of the beam.

Fig. 4. Schematic diagram of the separated components used for the receptance coupling analysis approach.
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where the desired deflection FRF due to an applied force is the first entry in the matrix for each frequency. The
solution for the case of excitation at location A is

G33 ¼ R33 � R32bðR22 þ R2b2bÞ
�1R2b3. (29)

To compare the proposed solution and the receptance coupling result, consider the model given in Fig. 5. The
model consists of a stepped beam with a rectangular cross section and colinear neutral axis. The material is
7050 aluminum with a density of r ¼ 2830 kg=m3, a Young’s modulus of E ¼ 71:7e9 Pa, and structural
damping factor of Z ¼ 0:02. Both beam sections consist of the same material with the same damping factor
(Fig. 6).

Figs. 7 and 8 show a comparison of the real and imaginary portions of the FRFs obtained via Sections 2.2
and 2.3 to the receptance coupling solution. The results show that the solutions are identical. However, the
advantage of the proposed solution method is in the processing power required to obtain the solutions. As
shown in Eqs. (28) and (29), the receptance coupling solution requires inverting the matrices for each
frequency of interest. As the frequency vector becomes large, either due to more frequency resolution or larger
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Fig. 8. FRF comparison between analytical (solid) and receptance coupling (dashed) methods when forced at position A.

Fig. 7. FRF comparison between analytical (solid) and receptance coupling (dashed) methods when forced at position C.
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Fig. 9. Comparison of experimental (solid) and analytical (dashed) FRF when forced at position C.
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frequency bandwidth, the function becomes very costly to perform. The proposed solution, however, requires
far less computing power for large frequency vectors.
4. Experimental verification

This section provides experimental verification for the analyses of Sections 2.2 and 2.3. The experiment
consists of a stepped beam of 7050 aluminum with dimensions given in Fig. 4. The material has a density of
r ¼ 2830 kg=m3 and a Young’s modulus of E ¼ 71:7e9Pa. Structural damping was obtained as a best fit
approximation to the data. For excitation at location C, a damping value Z ¼ 0:003 was obtained. For
excitation at location A, the damping value was determined to be Z ¼ 0:001. The free–free boundary
conditions were obtained by suspending the beam with a taut nylon string, rigidly attached to the end of the
beam via a thin piece of plexi-glass as shown in Fig. 6. Experiments were conducted by impacting the beam
with a PCB1 modal hammer and obtaining the response with a PCB low mass accelerometer mounted onto the
beam. For each of the reported FRFs, 10 or more individual impact test were recorded, and averaged in the
frequency domain, to obtain the reported results.

To eliminate mass loading effects due to the inertia of the accelerometer, the analytical predictions were
compensated to include the additional dynamics of the system. The correction for a driving point FRF is given
by [18]

An ¼
A

1�mA
, (30)
1Commercial equipment is identified for completeness and does not necessarily imply endorsement by the authors.
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Fig. 10. Comparison of experimental (solid) and analytical (dashed) FRF when forced at position A.
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where An represents the accelerance FRF of total system including the accelerometer mass, A represents the
accelerance FRF of the original analytical system, and m is the extra mass of the accelerometer in the units of
kg. The accelerance FRFs are obtained from the receptance FRFs by the relationship

v

F
¼

A

�o2
, (31)

where o is the frequency vector in rad/s. As shown in Eq. (30), the mass loading effect is frequency dependent.
Figs. 9 and 10 show the results for the experiments for the first three modes for direct FRFs at locations C and
A, respectively. The accelerometer mass was measured to be m ¼ 0:7 g.

The data shows experimental modes at 286, 1159, and 1759Hz for the experimental test measured at
location C. Experimental modes for the test at location A were found to be located at 291, 1165, and 1771Hz.
The differences are due to additional relative inertia of the accelerometer when placed on the thinner cross
section. As the data shows, the experimental results are in excellent agreement with the analytical predictions.
Results show that analytical predictions are higher than the experimental measurements.

5. Summary and conclusions

Various researchers have previously calculated the natural frequencies of a discontinuous beam using
analytical and approximate methods. The goal of this paper was to predict the dynamic response of
discontinuous beams with one step change and an aligned neutral axis. The case of free–free boundary
conditions has been treated to obtain the direct FRF due to harmonic force or couple excitation at either end
location. The solution was represented as a boundary value problem whereby the constants are dependent on
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the boundary conditions. A comparison to receptance coupling methods have been shown to be identical. The
potential benefit of the proposed solution is less computational time for structures requiring high frequency
bandwidth or resolution. Experimental impact testing was performed using low mass accelerometers and
modal hammers to obtain the direct FRFs for the beam striking at either end location. The analytical
predictions were corrected for the additional inertia caused by the accelerometer attachment. The impact tests
have shown that the analytical predictions match experimental data with minimal errors.
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